

Scheme 2. Possible mechanistic steps involved in the formation of $\mathbf{4}$ from $\mathbf{6}$ and dppf.

The eight M-M contacts lie in the range $2.9922(13)-$ 2.794(2) $\AA$, the longest of which $[R u(1)-R u(4)]$ is bridged by the phosphines of the dppf ligand. The carbido atom is displaced from the mean plane of the four metals that constitute the base of the pyramid by $0.218(12) \AA$, away from the apex $[\mathrm{Ru}(5)]$. Along with the dppf ligand, 13 terminal carbonyls make up the ligand cage of the nido-cluster.

The dppf moiety is ligated in the vicinal form formally replacing two axial carbonyls of the known $\mathrm{Ru}_{5} \mathrm{C}(\mathrm{CO})_{15}$ cluster. The $\mathrm{Ru}-\mathrm{P}$ bonds $[\mathrm{Ru}(1)-\mathrm{P}(1)$, $\mathrm{Ru}(4)-\mathrm{P}(2)]$ appear to be orientated such that they are ca. collinear with the apical to basal $\mathrm{Ru}-\mathrm{Ru}$ contacts $[R u(1)-R u(5), R u(4)-R u(5)]$. The ferrocenyl group occupies a position proximal to the base of the cluster. The relative orientations of the P atoms with respect to the ferrocene moiety show a twist of $82.4^{\circ}$. The Cp rings are parallel to within estimated error, eclipsed to within $9.8^{\circ}$ and produce an average distance of 1.658(6) $\AA$ from their centroids to the iron.

### 2.4. The electronic specta of $\mathbf{1}, \mathbf{3}$ and dppf

The UV-vis spectra of metallocenes has proven to be a useful tool for probing subtle changes in electronic character of an encapsulated metal atom. The unusual green colour of $\mathbf{3}$ immediately suggested an electronic character significantly different to red $\mathbf{5}$. Details of the electronic spectra and their interpretations for TM carbonyl clusters are unfortunately lacking in the literature. In this work the electronic spectra of $\mathbf{1 , 3}$ and dppf were measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at ambient temperature and the data are presented in Table 1, while relevant bond lengths and angles for $\mathbf{1}$ and $\mathbf{3}$ are presented in Tables 2 and 3, respectively.
The spectrum for dppf may be interpreted by comparison with that of ferrocene [29]. As shown in Fig. 4, the ground state electronic configuration of dppf may be taken to be $\left(\mathrm{e}_{2 \mathrm{~g}}\right)^{4}\left(\mathrm{a}_{1 \mathrm{~g}}^{\prime}\right)^{2}$, the HOMO being predominantly of $\mathrm{d} z^{2}$ character. The maximum at 439 nm is assignable to the Laporte forbidden transition from the

